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Components of (Supervised) Learning

- Unknown target function: f: X’ - Y
Input space: X'
Output space: Y

- Training data: (x1;3’1): (xz,)’Z), - (XN, YN)

- Pick a formula g: X' — U that approximates the target
function f

selected from a set of hypotheses H



Supervised Learning:
Regression vs. Classification

- Supervised Learning

Regression: predict a continuous target variable
E.e.,y € [0,1]

Classification: predict a discrete target variable
Eg.y € {1,2,..,C}



Regression: .

xample

- Housing price prediction
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Training data: |

Xo

ixample

Training data

X1 X2 y
0.9 2.3 I
3.5 2.6 I
2.6 3.3 I
2.7 4.1 I
|.8 3.9 I
6.5 6.8 -1
7.2 7.5 -1
7.9 8.3 -1
6.9 8.3 -1
8.8 7.9 -1
9.1 6.2 -1

XX xXxXxx 11111



Classification: Example
- Weight (Cat, Dog)

A
1(Dog)=1~ O O 000 000 0O OIS

0(Cat)———e 0 00-®- OGP ® >
weight

weight



Linear regression
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Cost function
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8  This example has been adapted from: Prof. Andrew Ng’s slides



Review: Gradient Descent
- First-order optimization algorithm to find w* = argmin J(w)

w
Also known as ’steepest descent”

- In each step, takes steps proportional to the negative of the
gradient vector of the function at the current point w':

Wt+1 — Wt — v, V](Wt)

J (W) decreases fastest if one goes from w' in the direction of —Vj(w?)

Assumption: /(w) is defined and differentiable in a neighborhood of a
point w'

Gradient ascent takes steps proportional to (the positive
of) the gradient to find a local maximum of the function



Review: Gradient descent
- Minimize J(w)

i Step size
t+1 _ ..t ¢t~ (Learning rate parameter)
w =W = an](W )

ajw) ajw)  aJw)]

ow; = dw, = dwy

V] (w) =

- If n is small enough, then J(wt*1) < J(w).
- 1 can be allowed to change at every iteration as 1.
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Review: Gradient Descent Disadvantages

Local minima problem

However, when | is convex, all local minima are also global
minima = gradient descent can converge to the global

solution.
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Review: Problem of Gradient Descent with
Non-convex Cost Functions
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12 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford)



Review: Problem of Gradient Descent with
Non-convex Cost Functions
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13 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford)



Gradient Descent for SSE Cost Function

- J(w):Sum of squares error

J(w) = Zn (y(i) — g(x®; W))Z

=1

- Minimize J(w)
witl = wt — an](Wt)

- Weight update rule for g(x;w) = wlix: w=

n
wttl = wt 4+ ¢ Z (y(i) _ Wth(i)) x(®
i=1
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Gradient Descent for SSE Cost Function

- Weight update rule: g(x; w) = wlx

n
witl = wt 47 Z (y(i) _ Wth(i)) N0
=1

l

Batch mode: each step
considers all training data

- 1n:too small & gradient descent can be slow.

- 1: too large - gradient descent can overshoot the
minimum. It may fail to converge, or even diverge.
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Price $ (in 1000s)
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16 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford)



g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)

(function of the parameters w,, w;)
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g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)

(function of the parameters w,, w;)
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g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)

(function of the parameters w,, w;)
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g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)

(function of the parameters w,, w;)
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g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)
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g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)
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g(x, Wy, Wl) = Wy + W1 X ](W()' Wl)
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Linear Classifiers

25



Error-Driven Classification

26



Feature Vectors
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Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

>

We show input by x or f(x)

=)

=)

X

# free
YOUR NAME

MISSPELLED :
FROM FRIEND :

PIXEL-7,12
PIXEL-7,13

NUM_LOOPS

OoON O N

o

SPAM
or

”2”



Weights

- Binary case: compare features to a weight vector to identify the class

- Learning: figure out the weight vector from examples

# free : 4
YOUR NAME i-1
MISSPELLED : 1 # free 2
. YOUR NAME 0
FROM_FRIEND :-3 | Q9 YOUR_NANE 0
FROM FRIEND : 0
T - # free : 0
w'x + Wqo = 0 YOUR NAME  : 1
MISSPELLED : 1
Dot product FROM FRIEND : 1

positive means the
positive class
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Binary Decision Rule

- In the space of feature vectors

Examples are points

Any weight vector is a hyperplane

One side corresponds to y = +1

Other corresponds to y = —1 0C>f
o
w - +1 = SPAM
BIAS : -3 1
free 4
money : 2 1 = HAM 00 1 - ‘Wo- Fq T
x'w =0 W= W1 x ="
wa. x4

xTW = Wy + W1Xq + o WaXg
29




Weight Updates

30



Learning: Binary Perceptron

Start with weights = 0

For each training instance:
Classify with current weights

If correct (i.e.,J = y), no change!

If wrong: adjust the weight vector

wttl = wt 4 xDy®

31



Perceptron: Example

32



Learning: Binary Perceptron

Start with weights = 0

For each training instance:
Classify with current weights

9 = +1 wix>0
-1 wix<0

A

33



Learning: Binary Perceptron

Start with weights = 0
For each training instance:
Classify with current weights
yX
5 = {+1 wlx >0
-1 wix<0

If correct (i.e.,y = y), no change!

If wrong: adjust the weight vector by
adding or subtracting the feature

vector (subtract if y is -1):

w=w+xy

34



Perceptron criterion

- Two-class:y € {—1,1}
y=—1fOI"C2, y=1f0rC1

- Goal: Vi, x@ e C;, = wlx® > 0
vi, xV e ¢, =2 wlx® <0

o == w0y

LEM
M : subset of training data that are misclassified

Many solutions? Which solution among them?

35



Batch Perceptron

“Gradient Descent” to solve the optimization problem:

witt = wh =, Jp(w")

) == 3 200
LEM
Batch Perceptron converges in finite number of steps for linearly
separable data:

Initialize w
Repeat

w=w+7 Ziep xVy®
Until convergence

36



Stochastic Gradient Descent for Perceptron

- Single-sample perceptron:

If x( is misclassified:
wttl = wt 4 px®y®

- Perceptron convergence theorem: for linearly separable data

If training data are linearly separable, the single-sample perceptron is
also guaranteed to find a solution in a finite number of steps

Fixed-Increment single sample Perceptron

Initialize w, t < 0

repeat
n can be set to 1 and pt<—t+1
proof still works | .
i <« tmodN

if x() is misclassified then
w=w+x®y®
37 Until all patterns properly classified



Properties of Perceptrons

Separability: true if some parameters get the training set
perfectly classified

Separable

Convergence: if the training is separable, perceptron will
eventually converge (binary case)

Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

, k
mistakes < 5—2

38



Multiclass Decision Rule

If we have multiple classes:

A weight vector for each class:

Wy
Score (activation) of a class y:

T
Wyx

Prediction highest score wins

o _ T
y = arg)r/nax wy, X

39

wi x biggest

w1

w
wo 3

I'x biggest
wi x biggest Ws % BIgd

Binary = multiclass where the negative class has
weight zero



Learning: Multiclass Perceptron

- Start with all weights =0
- Pick up training examples one by one
- Predict with current weights

40



Learning: Multiclass Perceptron

41

Start with all weights =0
Pick up training examples one by one
Predict with current weights
y = argmax wy x
y
If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

W5;=W5;—x
Wy=Wy+x



Examples: Perceptron

- Non-Separable Case

58—
443

44

1 1 1 1 1 1 1
0o 0 11 1 22 2 33 3 44 4 55 5 66
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Logistic Regression

- Sigmoid (logistic) function

43

glx;w) = o(whx)

o(.) is an activation function

Activation function

o(z) =

1

1+e7%

x=[1,xq,..,x4]
w = [wo, Wy, ..., Wy]

o)




Logistic Regression: Cost Function

W = argmin J(w)
w

Jw) = —y(‘)log a(w x(l))) — (1 —yW)log (1 —a(wT x(‘)))

n
=1

- J(w) is convex w.r.t. parameters.

44



Logistic Regression: Loss Function

Loss(y,f(x; w)) = —yxlog(a(x; w)) — (1 —y)xlog(1 — a(x;w))

—log(o(x; w ify=1
Sincey=1ory =20 LOSS()’, o(x; W)) = {_10 (?l(—(a(x')v?/)) if ¢ -0
= 5 ’ Y

How is it related to zero-one loss?

) 1 y#9
LOSS(y,y)={O §=¥

1
1+ exp(—wTx)

olx;w) =

45



Logistic Regression: Gradient Descent

wih = wt —9R,J (W)
V] (W) = zn (c(WwTx®) — y@)x®
=1

- Is it similar to gradient of SSE for linear regression?

n . . .
V,J(w) = Z 1(wa(l) — yO)x®
i=

46



Multi-class Classifier

w{x biggest

W w1
— T
Sk = ka w3
w2
5 = wlx w3x
y = argmax sy 2 biggest
k biggest

47



Multi-class Classifier

- W =|W1 -+ Wg] contains one vector of parameters
for each class

In linear classifiers, W is dXK where d shows number of
features

W' x provides us a vector
- g(x; W) contains K numbers giving class scores for the

input X
gl W) = [g,(x, W), ..., g (x, W)]"

48



Multi-class Logistic Regression
: g(x; W) — [91(36, W)) ) gK(x; W)]T

- W =|W1 - Wg] contains one vector of parameters
for each class

exp (w?;x )

25?:1 exXp (W]Tx )

g W) =

. This is the softmax on s = [sq, ..., s¢]T = [wlx, ..., wkx]

=w' x

49



Logistic Regression: Multi-class

W = argmin J(W)
w
n K
1(W>=—Zz Dlog (gi (x0; w))
i=1 k=1

y is a vector of length K (1-of-K coding) W=[w; - wg]
e.g., y = [0,0,1,0]7 when the target class is C;

50



Logistic Regression: Multi-class

witt = wi — V] (W*)

g W) =Y (9,03 w) - y©) 20
wj i=1 g] ) y]
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Logistic Regression: Probabilistic Perspective

Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)]x(i);w)

w

with:
1

1+e W
1

1+e W

P(y(i) = +1|x(i);w) =

p(y(i) — le(i);w) —1—

= Two-class Logistic Regression

52



Multiclass Logistic Regression

- Multi-class linear classification wix biggest
. w1
A weight vector for each class: Wi
Score (activation) of a class y: Zp = w;;x w3
w2

T

Prediction w/highest score win: $ = argmax wZ,fx ng ng
. biggest
k biggest

- How to make the scores into probabilities?
e*! € e
€%l + e%2 + e%3 %1 4 %2 4 %3 e¥1 4 e?2 | 73
\ ) L )
Y Y

original activations softmax activations

Z92 <3

K1y <24 <3 ?
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Logistic Regression: Probabilistic Perspective

Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)]x(i);w)

with: WT .)x(i)
PlOROw) =
k=1

= Multi-Class Logistic Regression

54



Example

[

W,
WT — |:W2]
W3l3xa

Stretch pixels into column

56

231

1.1

24

3.2

\"é*\ ¢ ﬁfi 0.2 -0.5 0.1 2.0
TP s 1.5 | 1.3 | 21 | 0.0
= 0 |0.25| 0.2 |-03
Input image
wr

How can we tell whether this W and w,, is good or bad?

-96.8

437.9

61.95

Cat score

Dog score

Ship score

95 This slide has been adopted from Fei Fei Li and colleagues lectures, cs231n, Stanford 2017



Softmax Classifier Loss: Example

unnormalized probabilities

cat 3.2 24.5 013 |-

exp normalize 1Y = —1og0.13

car 5.1 - 1164.0 ~ | 0.87 | =089
frog -1.7 0.18 0.00

96 This slide has been adopted from Fei Fei Li and colleagues lectures, cs231n, Stanford 2017



Summary

- Linear regression

Sum of Squares Error (SSE)
Gradient descent

- Linear classification

Perceptron
Logistic regression

o7



