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Learning: Linear Methods



Components of (Supervised) Learning
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• Unknown target function: 𝑓:𝒳 → 𝒴
• Input space:𝒳
• Output space:𝒴

• Training data: 𝒙!, 𝑦! , 𝒙", 𝑦" , … , (𝒙#, 𝑦#)

• Pick a formula 𝑔:𝒳 → 𝒴 that approximates the target
function 𝑓
• selected from a set of hypothesesℋ



Supervised Learning: 
Regression vs. Classification
• Supervised Learning
• Regression: predict a continuous target variable

• E.g., 𝑦 ∈ [0,1]

• Classification: predict a discrete target variable
• E.g.,𝑦 ∈ {1,2, … , 𝐶}
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Regression: Example 
• Housing price prediction
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4 Figure adopted from slides of Andrew Ng



Training data: Example

𝑥! 𝑥" 𝑦
0.9 2.3 1

3.5 2.6 1

2.6 3.3 1

2.7 4.1 1

1.8 3.9 1

6.5 6.8 -1

7.2 7.5 -1

7.9 8.3 -1

6.9 8.3 -1

8.8 7.9 -1

9.1 6.2 -1x1

x2
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Training data



Classification: Example 
• Weight (Cat, Dog)
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Linear regression

Cost function:
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Cost function
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8 This example has been adapted from: Prof. Andrew Ng’s slides



Review: Gradient Descent
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• First-order optimization algorithm to find 𝒘∗ = argmin
𝒘

𝐽(𝒘)

• Also known as ”steepest descent”

• In each step, takes steps proportional to the negative of the
gradient vector of the function at the current point 𝒘3:

𝒘34+ = 𝒘3 − 𝛾3 𝛻 𝐽 𝒘3

• 𝐽(𝒘) decreases fastest if one goes from 𝒘! in the direction of −𝛻𝐽 𝒘!

• Assumption: 𝐽(𝒘) is defined and differentiable in a neighborhood of a
point 𝒘!

Gradient ascent takes steps proportional to (the positive 
of) the gradient to find a local maximum of the function



Review: Gradient descent
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• Minimize 𝐽(𝒘)

𝒘$%! = 𝒘$ − 𝜂𝛻𝒘𝐽(𝒘$)

𝛻𝒘𝐽 𝒘 =
𝜕𝐽 𝒘
𝜕𝑤+

,
𝜕𝐽 𝒘
𝜕𝑤-

, … ,
𝜕𝐽 𝒘
𝜕𝑤6
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• If 𝜂 is small enough, then 𝐽 𝒘34+ ≤ 𝐽 𝒘3 .
• 𝜂 can be allowed to change at every iteration as 𝜂3.

Step size
(Learning rate parameter)



Review: Gradient Descent Disadvantages
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• Local minima problem

• However, when 𝐽 is convex, all local minima are also global
minima ⇒ gradient descent can converge to the global
solution.



𝜔
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Review: Problem of Gradient Descent with 
Non-convex Cost Functions

12 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



𝜔&
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Review: Problem of Gradient Descent with 
Non-convex Cost Functions

13 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



Gradient Descent for SSE Cost Function
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• 𝐽(𝒘): Sum of squares error

𝐽 𝒘 =3
'(!

)
𝑦 ' − 𝑔 𝒙 ' ; 𝒘

"

• Minimize 𝐽(𝒘)
𝒘$%! = 𝒘$ − 𝜂𝛻𝒘𝐽(𝒘$)

• Weight update rule for 𝑔 𝒙;𝒘 = 𝒘*𝒙:

𝒘$%! = 𝒘$ + 𝜂3
'(!

)

𝑦 ' −𝒘$*𝒙 ' 𝒙(')

𝒘 =

𝑤&
𝑤!
⋮
𝑤'

𝒙 =

1
𝑥!
⋮
𝑥'



Gradient Descent for SSE Cost Function
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• Weight update rule:𝑔 𝒙;𝒘 = 𝒘*𝒙

𝒘$%! = 𝒘$ + 𝜂3
'(!

)

𝑦 ' −𝒘01𝒙 ' 𝒙(')

• 𝜂: too small → gradient descent can be slow.
• 𝜂 : too large → gradient descent can overshoot the
minimum. It may fail to converge, or even diverge.

Batch mode: each step 
considers all training data



(function of the parameters 𝑤&, 𝑤!)
𝑔 𝑥;𝑤&, 𝑤! = 𝑤& + 𝑤!𝑥

𝐽(𝑤&, 𝑤!)

𝑤&

𝑤
!

This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 16



(function of the parameters 𝑤&, 𝑤!)
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(function of the parameters 𝑤&, 𝑤!)
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(function of the parameters 𝑤&, 𝑤!)
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(function of the parameters 𝑤&, 𝑤!)
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Linear Classifiers

25



Error-Driven Classification

26



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”

27

We show input by 𝒙 or 𝑓(𝒙)



Weights

• Binary case: compare features to a weight vector to identify the class

• Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            
positive means the 
positive class

28

𝑥!

𝑥"
𝑤(𝑥 + 𝑤& = 0



Binary Decision Rule

• In the space of feature vectors
• Examples are points
• Any weight vector is a hyperplane
• One side corresponds to @𝑦 = +1
• Other corresponds to @𝑦 = −1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free

m
on

ey
+1 = SPAM

-1 = HAM
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𝒙(𝒘 = 𝑤& + 𝑤!𝑥!+ . . . 𝑤'𝑥'

𝒘 =

𝑤&
𝑤!
⋮
𝑤'

𝒙 =

1
𝑥!
⋮
𝑥'

𝒙(𝒘 = 0



Weight Updates
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Learning: Binary Perceptron

• Start with weights = 0
• For each training instance:

• Classify with current weights

• If correct (i.e., !𝑦 = 𝑦), no change!

• If wrong: adjust the weight vector

31

𝒘34+ = 𝒘3 + 𝒙())𝑦())



Perceptron: Example

32



Learning: Binary Perceptron

• Start with weights = 0
• For each training instance:

• Classify with current weights

33

@𝑦 = B+1 𝒘(𝒙 ≥ 0
−1 𝒘(𝒙 < 0

𝑥



Learning: Binary Perceptron

• Start with weights = 0
• For each training instance:

• Classify with current weights

• If correct (i.e., @𝑦 = 𝑦), no change!
• If wrong: adjust the weight vector by
adding or subtracting the feature
vector (subtract if y is -1):

34

@𝑦 = B+1 𝒘(𝒙 ≥ 0
−1 𝒘(𝒙 < 0

𝑥𝑦𝒙

𝒘 = 𝒘+ 𝒙𝑦



Perceptron criterion

35

• Two-class: 𝑦 ∈ {−1,1}
• 𝑦 = −1 for 𝐶", 𝑦 = 1 for 𝐶#

• Goal:∀𝑖, 𝒙 ) ∈ 𝐶+ ⇒ 𝒘7𝒙 ) > 0
• ∀𝑖, 𝒙 ) ∈ 𝐶- ⇒ 𝒘7𝒙 ) < 0

𝐽E 𝒘 = −$
)∈ℳ

𝒘7𝒙 ) 𝑦 )

ℳ: subset of training data that are misclassified

Many solutions? Which solution among them?



Batch Perceptron
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“Gradient Descent” to solve the optimization problem:

𝒘$%! = 𝒘$ − 𝜂𝛻𝒘𝐽-(𝒘$)

𝛻𝒘𝐽- 𝒘 = −3
'∈ℳ

𝒙 ' 𝑦 '

Batch Perceptron converges in finite number of steps for linearly
separable data:

Initialize 𝒘
Repeat

𝒘 = 𝒘+ 𝜂∑$∈ℳ 𝒙 $ 𝑦 $

Until convergence



Stochastic Gradient Descent for Perceptron
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• Single-sample perceptron:
• If 𝒙(%) is misclassified:

𝒘34+ = 𝒘3 + 𝜂𝒙())𝑦())

• Perceptron convergence theorem: for linearly separable data
• If training data are linearly separable, the single-sample perceptron is
also guaranteed to find a solution in a finite number of steps

Initialize 𝒘, 𝑡 ← 0
repeat

𝑡 ← 𝑡 + 1
𝑖 ← 𝑡 mod 𝑁
if 𝒙($) is misclassified then

𝒘 = 𝒘+ 𝒙 $ 𝑦($)
Until all patterns properly classified

Fixed-Increment single sample Perceptron

𝜂 can be set to 1 and 
proof still works



Properties of Perceptrons

• Separability: true if some parameters get the training set
perfectly classified

• Convergence: if the training is separable, perceptron will
eventually converge (binary case)

• Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

38



Multiclass Decision Rule

• If we have multiple classes:
• A weight vector for each class:

• Score (activation) of a class y:

• Prediction highest score wins

Binary = multiclass where the negative class has 
weight zero

39

𝑤)(𝑥

𝑤)

@𝑦 = argmax
)

𝑤)(𝑥

𝑤!(𝑥 biggest

𝑤"(𝑥 biggest
𝑤*(𝑥 biggest



Learning: Multiclass Perceptron

• Start with all weights = 0
• Pick up training examples one by one
• Predict with current weights

40

𝑤 +)

𝑤)

𝑥

𝑤)!



Learning: Multiclass Perceptron

• Start with all weights = 0
• Pick up training examples one by one
• Predict with current weights

• If correct, no change!
• If wrong: lower score of wrong answer,
raise score of right answer

41

𝑤)

𝑥
@𝑦 = argmax

)
𝑤)(𝑥

𝑤)!

𝑤 +)

𝑤 )* = 𝑤 )* − 𝑥
𝑤* = 𝑤* + 𝑥



Examples: Perceptron

• Non-Separable Case

42



Logistic Regression

43

𝑔 𝒙;𝒘 = 𝜎(𝒘1𝒙)

𝜎 . is an activation function

• Sigmoid (logistic) function
• Activation function

𝜎 𝑧 =
1

1 + 𝑒AB

𝐾 = 2

𝒙 = 1, 𝑥!, … , 𝑥'
𝒘 = 𝑤&, 𝑤!, … , 𝑤'



Logistic Regression: Cost Function
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J𝒘 = argmin
𝒘

𝐽(𝒘)

𝐽 𝒘 =C
$+#

,

−𝑦($)log 𝜎 𝒘-𝒙($) − (1 − 𝑦($))log 1 − 𝜎 𝒘-𝒙($)

• 𝐽(𝒘) is convex w.r.t. parameters.



Logistic Regression: Loss Function
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Loss 𝑦, 𝑓 𝒙;𝒘 = −𝑦×log 𝜎 𝒙;𝒘 − (1 − 𝑦)×log(1 − 𝜎 𝒙;𝒘 )

Loss 𝑦, 𝜎 𝒙;𝒘 = L
−log(𝜎(𝒙;𝒘)) if 𝑦 = 1

−log(1 − 𝜎 𝒙;𝒘 ) if 𝑦 = 0

How is it related to zero-one loss?

Loss 𝑦, O𝑦 = L1 𝑦 ≠ O𝑦
0 𝑦 = O𝑦

𝜎 𝒙;𝒘 =
1

1 + 𝑒𝑥𝑝(−𝒘(𝒙)

Since 𝑦 = 1 or 𝑦 = 0
⇒



Logistic Regression: Gradient Descent 
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𝒘$%! = 𝒘$ − 𝜂𝛻𝒘𝐽(𝒘$)

𝛻𝒘𝐽 𝒘 =3
'(!

)
𝜎 𝒘*𝒙 ' − 𝑦 ' 𝒙 '

• Is it similar to gradient of SSE for linear regression?

𝛻𝒘𝐽 𝒘 =)
%()

*
𝒘+𝒙 % − 𝑦 % 𝒙 %



Multi-class Classifier

47

𝒘!
(𝒙

𝒘"
(𝒙 𝒘*

(𝒙

𝒘,

𝑠, = 𝒘,
(𝒙

@𝑦 = argmax
,

𝒔𝒌



Multi-class Classifier

• 𝑾 = 𝒘! ⋯ 𝒘0 contains one vector of parameters
for each class
• In linear classifiers, 𝑾 is 𝑑×𝐾 where 𝑑 shows number of
features

• 𝑾+𝒙 provides us a vector

• 𝑔 𝒙;𝑾 contains K numbers giving class scores for the
input 𝒙
• 𝑔 𝒙;𝑾 = 𝑔) 𝒙,𝑾 ,… , 𝑔, 𝒙,𝑾 +

48



Multi-class Logistic Regression
• 𝑔 𝒙;𝑾 = 𝑔! 𝒙,𝑾 ,… , 𝑔0 𝒙,𝑾 *

• 𝑾 = 𝒘! ⋯ 𝒘0 contains one vector of parameters
for each class

• This is the softmax on 𝒔 = 𝑠!, … , 𝑠0 * = 𝒘!*𝒙,… ,𝒘0
*𝒙

= 𝑾* 𝒙

49

𝑔Q 𝒙;𝑾 =
exp(𝒘Q

1𝒙 )
∑RSTU exp(𝒘R1𝒙 )



Logistic Regression: Multi-class
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K𝑾 = argmin
𝑾

𝐽(𝑾)

𝐽 𝑾 = −$
)*+

,

$
X*+

Y

𝑦X
) log 𝑔X 𝒙());𝑾

𝑾 = 𝒘! ⋯ 𝒘.𝒚 is a vector of length 𝐾 (1-of-K coding)
e.g., 𝒚 = 0,0,1,0 ( when the target class is 𝐶*



Logistic Regression: Multi-class
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𝒘1$%! = 𝒘1$ − 𝜂𝛻𝑾𝐽(𝑾$)

𝛻𝒘!𝐽 𝑾 =$
)*+

,
𝑔] 𝒙 ) ;𝑾 − 𝑦]

) 𝒙 )



Logistic Regression: Probabilistic Perspective

Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

= Two-class Logistic Regression

52

𝑃 𝑦 ) = +1 𝑥 ) ; 𝑤 =
1

1 + 𝑒^𝒘"𝒙

𝑃 𝑦 ) = 0 𝑥 ) ; 𝑤 = 1 −
1

1 + 𝑒^𝒘"𝒙



Multiclass Logistic Regression

• Multi-class linear classification

• A weight vector for each class:

• Score (activation) of a class y:

• Prediction w/highest score wins:

• How to make the scores into probabilities?

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

53

𝒘!
(𝒙

𝒘"
(𝒙 𝒘*

(𝒙

𝒘,

𝑧, = 𝒘,
(𝒙

@𝑦 = argmax
,

𝒘,
(𝒙



Logistic Regression: Probabilistic Perspective

Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression

54

𝑃 𝑦 V 𝑥 V ; 𝑤 =
𝑒
𝒘
! "
# 𝒙(")

∑QSTU 𝑒𝒘&#𝒙(")



Example

How can we tell whether this 𝑾 and 𝒘& is good or bad?

𝑾1

55 This slide has been adopted from Fei Fei Li and colleagues lectures, cs231n, Stanford 2017

𝒙 =
𝑥#
⋮
𝑥.

𝑾- =
𝒘#
𝒘"
𝒘/ /×.

𝒘𝟎 =
𝑏#
𝑏"
𝑏/



Softmax Classifier Loss: Example

𝐿(!) = − log 0.13
= 0.89

𝐿()) = − log
𝑒f#(%)

∑]*+Y 𝑒f!

56 This slide has been adopted from Fei Fei Li and colleagues lectures, cs231n, Stanford 2017

𝑠2 = 𝒘2
-𝒙



Summary

57

• Linear regression
• Sum of Squares Error (SSE)
• Gradient descent

• Linear classification
• Perceptron
• Logistic regression


